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ABSTRACT

Papers on the management of randomly varying renewable resources have
been concerned with uncertainty in the population dynamics. Optimal
management regimes in these circumstances depend on the population size,
which usually only can be obtained at a large cost. In this paper, algorithms
are discussed which allow either for a delay in obtaining the population
size, or N years to elapse between population estimates. The algorithms
are applied to a model of salmon runs and to an anchovy growth model. In
each instance, consistent information delay is found to be costly, while
frequent surveys also are found to be costly. These results raise questions
as to the traditionally held view on the value of information, and suggest
that managers may prefer surveys for reasons other than management policy

per se.
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Introduction

- The treatment of uncertainty when managing fisheries or other renewable
resources has been concerned with uncertainty or randomness in the year to
year population dynamics (see for example Reed 1974; Walters 1975;
Mendelssohn 1976, 1978; Walters and Hilborn 1976; Mendelssohn and Sobel
1979). Policies that maximize the total expected value of a randomly
varying population are contingency plans that say if population size x is
observed this year, then take harvest action y. Usually, however,
observing the population size is costly--either a costly survey is needed
to estimate the population size, or else the estimate normally only is
available with a delay, but for some cost can be found currently. It
appears to be the standard gospel that more information on the status of
the population is always good, no matter what the cost expended to obtain
the information. In this paper algorithms are discussed which find optimal
policies with information delay or surveying costs. The algorithms are
applied to a model of anchovy population dynamics (MacCall 1978) and to
a model of salmon runs on the Wood River off Bristol Bay (Mathews 1967).
The results strongly suggest that in many instances information is very
costly—--more costly than the gain in expected total value possible from
the increased information. Optimal policies are found for no surveying
for a period of N years that perform nearly as well as the best policy

available with complete information.
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Despite the fact that our results suggest that over a broad range of
surveying intervals little value is added to management from more
frequent surveys, experienced managers still seem to deem surveys as
impo?tant. We suggest several possible reasons for this discrepancy.
Firstly, our intuition in dealing with random situations usually is not
that sharp, and it is human nature to always want a little more information,
just to be sure. In this case, despite their experience, managers may be
overevaluating the worth of the information they receive.

A more likely explanation is that managers are uncertain about the
validity of the population dynamics model. 1In this instance, frequent
surveys provide additional information about the true form of the population
dynamics, as well as a final measure of safety if our management has failed,
partly because we do not understand well even the probabilistic dynamics of
the population.

In either case, our results suggest a need for a closer examination of
why and how we collect the data we do, and also our attitude towards risk

in using this information.

The Models

The anchovy model is described completely in MacCall (1978). Unlike
in that paper, we use fishing mortality, not expected catch, as the decision
variable, and restrict effort to lie between 0 and 0.2. Fishing mortality
of 0.2 produces expected catches over all population sizes slightly greater
than the distribution of catches over the last several years. The

population dynamics are:
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x_ = Biomass in year t (x10")
F, = Fishing mortality in year t
d = Normal random variable, zero mean, variance = 0.2294
¢, = Catch in year t, a random variable
v, = Value of catch in year t
o = Discount factor = 0.97

then:
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and the value of the catch Cp is (Huppert et al. 1972):
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The population dynamics for the salmon model are (Mathews 1967):

Number of recruits in year t

b
]

t
z, = Number harvested in year t
Yo T X "z T Number of spawners in period t
d = Normal random variable, zero mean, variance = 0.2098
a = Discount factor = 0.97
Then:
(2.5) x_. = () (4.077y )exp{-O.SOOy}
t+1 t t

and it is desired to:

ik - y)

Q
maximize E X a
t t

(2.6 s.t. 0<y <x_.

Since fishing mortality is a rate, and can be defined independently
of the population size, the anchovy model is sensible as defined in (2.1)
-(2.4) even when the present population size is not known with certainty.
The same is not true for the salmon model, since if by chance z, > Xys
the statement "harvest zt" has no meaning. In what follows, it is assumed
that z, is a catch quota each year, and that the actual catch is minimum
(xt, zt). Then substitute X, = min(xt, zt) for Ye in (2.5), and the model

is sensible for situations where the number of recruits are not known with

certainty.
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That the actual catch allows for possible depletion of the stock is
somewhat unrealistic. Even with a large quota during years of low
population sizes, it would be expected that catch per unit effort would
decréase enough to insure that the stock would not be completely depleted.
However, two justifications are possible for this assumption. Firstly
the absorbing state zero can be considered not as absolute zero, but
rather as all population levels such that fishing would be impractical
for many years. Secondly, we have no basis for setting up the probabilities
of the actual catch given the quota and present population size, and the
nature of our results suggest that on the whole this assumption has not

significantly affected the results of the analysis.

Algorithms and Results

The two algorithms used are based on the work of Sondik (1971, 1978)
on partially observed Markov decision problems. The key 1s to use what
information we do know about the population to redefine our state in such
a way that transition probabilities for the transformed states can be
defined. When there is information delay, what is known 1is the population
size last year and the action taken last year. This is known every period,
and with some fiddling (2.1) or (2.5) can be redefined for this definition
of a state. Details of this specialization of Sondik's algorithm can be

found in Brooks and Leondes (1972).
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When we go N years without a survey (N = 0 implies survey every year,
the completely observed problem), sufficient information is contained in a
probability distribution, the probability of any given population size
thi; period, This also can be readily computed from (2.1) and (2.5).

See Sondik and Mendelssohn (1979) for details of the algorithm.

When N > 0, it is necessary to provide an N + 1 year contingency plan,
that says if x is the population size at the last survey, then for the
next N + 1 years (including the survey year) take the specified harvest
action.

Let £(i) be the optimal expected value when starting with population
size 1 in the completely observed model. Let fO(i) be the optimal
expected value in the surveying year, when we will go N years without a
survey, and population size i is the estimated population size. And finally,
let £(i, a) be the expected value for the transformed state with information
delay.

For computational purposes, each model was discretized. The anchovy
model was discretized on a grid of 25 population sizes and 26 fishing
mortalities (including zero), while the salmon model was discretized on a
grid of 26 population sizes (including zero) and 26 possible quotas.
Figures 1(a)-(c) give an optimal policy for the anchovy model with
N=20, 1, 2, 3. The lines are linear interpolations between the calculated
policies at the grid points. The figures compare policies based on how
many years have elapsed since a survey was performed. Figure 2 shows an
optimal policy (with linear interpolation) for the anchovy model with time

delay.



8

Fig. 3 Figure 3 shows the four optimal quotas for the salmon model when we
go 3 years without a survey (N = 3), and compares it with the optimal
policy for the completely observed problem. An optimal policy for the
salmon model with information delays is not easily graphed, but never
allows a quota greater than 0.84.

As a measure of the cost of the information, we use two measures

throughout, though there are other measures which are both reasonable and
possible. The cost of going N years without a survey, compared to going

n <N years without a survey is defined as:

sub zero 3.0 DIFF = maximum {fg(i) - fg(i)}

The cost of the information lag, compared to no information lag, can be

measured by:

(3.2 CDIFF = maximum{f(i) - minimum f(i, a)}
i harvest
action
Table 1 in Table 2
Table 2 These values are tabulated in Table 1 for the anchovy model and in Table

for the salmon model.

Discussion

To determine the overall value of surveying or not, it is necessary,
to include the costs due to surveying or making a current rather than

delayed population estimate. Suppose a survey costs c dollars a year,
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and the cost of no delay is D dollars a year. Then for a discount factor
o, the total cost over an infinite horizon of surveying every year is
¢/1-a, and the total cost over an infinite horizon for current population
esti;ates is D/1-a. 1In practice, C or D may be difficult to determine,
since, for example, the survey that obtains population estimates for
management may also provide better estimates of the transition functions
and other valuable scientific information.

However, suppose we always go 1 year without a survey. Then the
total surveying cost is C/l-az, and the savings is aC/(l—-aZ). Therefore,

surveying every is preferable only if:

(3.3) [1 - a/a] » DIFF > C

The equivalent formula for 2 years without a survey is:

(34) (@ - o3/a@ + o)) « p1FF > ¢

and for 3 years without a survey:

(3.5 [(1 - a"/a(l + 0 + ocz)] * DIFF > C

Similarly, current population estimates are desirable only if:

(3.6) (1 - a) *CDIFF > D
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Both DIFF and CDIFF in (3.3)-(3.6) can be determined independently of
C or D. Given this value, and the value of g, the decisionmaker can
decide whether more information is worth the cost.

As examples, for the anchovy model, (3.3)-(3.5) become for g = 0.97:

(0.0609) « (0.0) > C
(0.0457) + (0.50482) > C

(0.0406) + (0.7501) > C

The cost of a survey would have to be vanishingly small to make it
preferable to survey every year compared to surveying every other year,
2 years without surveying is preferred to surveying every year as long
as the cost of a survey is greater than $23,070, and 3 years without a
survey is preferable to surveying every year 1if the cost of the survey
is greater than $30,454. Two years without a survey is preferred to
1 year without a survey if the survey cost is greater than $30,744, and
3 years is preferred if the survey cost is greater than $34,280.

Paying for timely information is preferable only if this costs less
than $219,548 per year.

Similarly for the salmon model, surveying every year is preferable
only if the cost of the survey is less than the value of a total discounted
harvest of 7,260 salmon while current population estimates are worthwhile
if the costs are less than the value of a total discounted harvest of

787,020.
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Based on these results, it would appear that frequent surveys are
costly, while a constant delay in information is expensive. These results
can be explained more fully by carefully examining both the models and the
optimal policies. For the anchovy model, note that the transistion (2.1)
is composed of a deterministic exponential mortality on standing biomass,
and a random term on recruitment, which depends only on the biomass at
the beginning of the period before harvesting has started. Within a year,
the discounted biomass of one unit of standing biomass with no fishing
mortality and independent of recruitment, is 0.4358. After 2 years, its
discounted biomass is 0.19. This suggests that the problem is really a
2-,perhaps a 3-year problem. This observation is born out by noticing
that for N = 2 and N = 3, the same policies are optimal at 0, 1, and 2
years after the survey.

Moreover, the completely observed optimal policy (N = 0) has broad
ranges of population sizes over which an optimal policy is the same. If
we do not survey next year, we do not know the population size, but with
very high probability we do know the policy that would have been chosen
if a survey had been taken. If the initial population size is 0.100 and
we follow an optimal policy for N = 0, then with a 99.9% chance we would
have a population size less than 0.700 next year. In the zone 0.100~0.700,
an optimal policy for N = 0 has only one value, that is Ft = 0.

If the initial population size was 2.00 and an optimal policy for
N = 0 were followed, then with a 95.27 chance the population size next
year would be greater than 0.900. The zone 0.900-3.649 has only one value

for an optimal policy, Ft = 0.2.
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The salmon model exhibits similar behavior but for different reasons.
Here, there 1s significant reason for being concerned about a much too
high quota when no surveying is being performed. The optimal policy for
N ='O has a mean catch of 1,135,700 and a median catch of 980,000 (see
Mendelssohn 1978). The optimal policy for N = 3 achieves a balance by
allowing an increased quota when the population size is known (increased
by 560,000 over most population sizes) and a sharply decreased quota
during the non-survey years, to lower the risk of overfishing. However,
this reduced quota is only 575,700 less than the mean per period catch,
and only 420,000 less than the median catch, This balance of an increased
catch the year of the survey, and a reduced discounted catch during other
vears eliminates the relatively rare very large catch during the non-
survey years. Therefore, going 3 years without surveying can produce
almost as large an expected total value as surveying every year, but at a
reduced cost.

The salmon model illustrates much more clearly than the anchovy model
why consistent information delays are costly. The key feature in going
N years without surveying is that at set intervals of time we find anew
the correct population size. This allows for the management to self-correct.
With the information delay, we never know the true population size. In
the salmon model, we are always running the risk that z, is very close to
X, Since absorption into very low population sizes is possible, an optimal
policy is weighted heavily by this fact. In fact, it is similar to an
optimal policy for the non-surveying years when N = 3, but does not have

the balancing effect of an increased catch when a survey is made.
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Summary

We have demonstrated that it is possible to include the cost of

obtaining information into a
resource. Numerical results
function for the population,
be justified by the gains in

can be tempered by observing

stochastic management model of a renewable
suggest that given an accurate transition

the gathering of costly information cannot
the total value of the resource. This remark

that the information gathered for one purpose

often has several other uses, so that the true cost of obtaining the

information may be difficult

to determine.

The technique we propose allows the gain in value from obtaining the

information to be calculated

independently of the cost of obtaining the

information. Simple formulas are then constructed which say to the

decisionmaker that the Iinformation is too costly if it costs more than a

specified amount. This allows the decisionmaker to use both subjective

and objective information to

information.

determine the worth of the increase in
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Table 1. Maximum loss of total expected economic value in anchovy

model from not decreasing survey interval (x106).

Survey One year Two years Three years
every year between surveys between surveys between surveys

Survey
every year -

One year
between surveys 0.0% —_—

Two years
between surveys 0.50482 0.50482 -

Three years
between surveys (0.7501 0.7501 0.2603 -

*The difference was less than the numerical accuracy of the computer
program,

Maximum loss due to information delay = 7.31828.



Table 2. Maximum loss in total expected discounted harvest of

salmon runs (x106).

Loss from delayed information > 26.234

Loss from 3 years without a survey = 0.17882
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